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Hello everyone. My name is Haoyi, and this talk is going to be about How an 
Optimizing Compiler Works

This topic is a recent interest of mine: how could we write an optimizing compiler 
remove the “Scala Tax” that stops idiomatic Scala programs from being as efficient as 
their Java equivalents?

There are a number of optimizers in the Scala ecosystem: one in each of the Scala’s 
JVM, Javascript, and Native-LLVM backends.

For most people, an optimizer is a black box: code goes in one end, and faster code 
comes out the other. The goal of this talk is to open up that black box, and understand 
how simple data structures and algorithms are enough to perform useful optimizations 
on our programs.



Who Am I
Software Engineer at Databricks

Developer Tools

Lots of Scala internally

Lots of cool technology

Unified Analytics

Hiring in SF and Amsterdam!

About myself, I’m a software engineer at Databricks working on developer tools. We 
have a lot of Scala internally, and a lot of cool technology that we’re building to create 
the unified analytics platform of the future. Databricks isn’t your run-of-the-mill CRUD 
app, so if you’re interested in Scala and hard technology problems, we’re hiring in our 
offices in San Francisco and Amsterdam, so come talk to me after!



Who Am I
Open Source Software Maintainer

com.lihaoyi::sourcecode com.lihaoyi::utest

com.lihaoyi::fansi com.lihaoyi::cask

com.lihaoyi::os-lib com.lihaoyi::fastparse

com.lihaoyi::pprint com.lihaoyi::ujson

com.lihaoyi::upack com.lihaoyi::upickle

com.lihaoyi::requests-scala com.lihaoyi::scalatags

com.lihaoyi::ammonite com.lihaoyi::mill

I also maintain quite an extensive suite of open source Scala libraries and tools.



How an Optimizing Compiler Works
Hand Optimizing Some Code

Modelling a Program

Making Inferences and Optimizations

But this talk is not about Databricks, or my open source work, but about optimizing 
compilation.

We will go through three main sections. 

First, we will optimize some sample code by hand

Next, the different ways in which your optimizer can model programs in memory

Lastly, how to perform the same optimizations we had done by-hand, but 
automatically



How an Optimizing Compiler Works
Hand Optimizing Some Code

- Type Inference
- Inlining
- Constant Folding
- Dead Code Elimination
- Branch Elimination
- Late Scheduling

Modelling a Program

Making Inferences and Optimizations

To begin with, let’s walk through some simple optimizations.



Manual Optimizations: Baseline
static int main(int n){

  int count = 0, total = 0, multiplied = 0;

  Logger logger = new PrintLogger();

  while(count < n){

    count += 1;

    multiplied *= count;

    if (multiplied < 100) logger.log(count);

    total += ackermann(2, 2);

    total += ackermann(multiplied, n);

    int d1 = ackermann(n, 1);

    total += d1 * multiplied;

    int d2 = ackermann(n, count);

    if (count % 2 == 0) total += d2;

  }

  return total;

}

// https://en.wikipedia.org/wiki/Ackermann_function

static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

}

interface Logger{

  public void log(Object a);

}

static class PrintLogger implements Logger{

  public void log(Object a){  System.out.println(a); }

}

static class ErrLogger implements Logger{

  public void log(Object a){ System.err.println(a); }

}

This is a small snippet of Java source code. Java is a well-known, relatively simple 
language. Scala code usually translates straightforwardly to Java.

This main function takes an argument, performs some computation, function calls, 
and logging, before returning a value. Assume that this code is run in isolation, so 
what you see is all there is.

Let’s say our job is to optimize this code, ignoring whether what it does is useful or 
not. What can we do to make this code smaller, simpler, and faster?



Manual Optimizations: Type Inference
static int main(int n){

  int count = 0, total = 0, multiplied = 0;

- Logger logger = new PrintLogger();

+ PrintLogger logger = new PrintLogger();

  while(count < n){

    count += 1;

    multiplied *= count;

    if (multiplied < 100) logger.log(count);

    total += ackermann(2, 2);

    total += ackermann(multiplied, n);

    int d1 = ackermann(n, 1);

    total += d1 * multiplied;

    int d2 = ackermann(n, count);

    if (count % 2 == 0) total += d2;

  }

  return total;

}

// https://en.wikipedia.org/wiki/Ackermann_function

static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

}

interface Logger{

  public void log(Object a);

}

static class PrintLogger implements Logger{

  public void log(Object a){  System.out.println(a); }

}

static class ErrLogger implements Logger{

  public void log(Object a){ System.err.println(a); }

}

First, we can see that the logger variable is typed less specifically than it could be. 
We know it is a concrete PrintLogger, not just any Logger



Manual Optimizations: Inlining
static int main(int n){

  int count = 0, total = 0, multiplied = 0;

  PrintLogger logger = new PrintLogger();

  while(count < n){

    count += 1;

    multiplied *= count;

-   if (multiplied < 100) logger.log(count);

+   if (multiplied < 100) System.out.println(count);

    total += ackermann(2, 2);

    total += ackermann(multiplied, n);

    int d1 = ackermann(n, 1);

    total += d1 * multiplied;

    int d2 = ackermann(n, count);

    if (count % 2 == 0) total += d2;

  }

  return total;

}

// https://en.wikipedia.org/wiki/Ackermann_function

static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

}

interface Logger{

  public void log(Object a);

}

static class PrintLogger implements Logger{

  public void log(Object a){  System.out.println(a); }

}

static class ErrLogger implements Logger{

  public void log(Object a){ System.err.println(a); }

}

We can then infer the call to logger.log can only go to one implementation, 
System.out.println, and can simply inline it.



Manual Optimizations: Constant Folding
// https://en.wikipedia.org/wiki/Ackermann_function

static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

}

interface Logger{

  public void log(Object a);

}

static class PrintLogger implements Logger{

  public void log(Object a){  System.out.println(a); }

}

static class ErrLogger implements Logger{

  public void log(Object a){ System.err.println(a); }

}

static int main(int n){

- int count = 0, total = 0, multiplied = 0;

+ int count = 0, total = 0;

  PrintLogger logger = new PrintLogger();

  while(count < n){

    count += 1;

-   multiplied *= count;

-   if (multiplied < 100) System.out.println(count);

+   if (0 < 100) System.out.println(count);

    total += ackermann(2, 2);

-   total += ackermann(multiplied, n);

+   total += ackermann(0, n);

    int d1 = ackermann(n, 1);

-   total += d1 * multiplied;

    int d2 = ackermann(n, count);

    if (count % 2 == 0) total += d2;

  }

  return total;

}

Next, the multiplied variable starts off 0, and since it only gets multiplied, it remains 0 
throughout. We can thus discard the variable and just put 0 everywhere it is used.



Manual Optimizations: Dead Code Elimination
// https://en.wikipedia.org/wiki/Ackermann_function

static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

}

- interface Logger{

-   public void log(Object a);

- }

- static class PrintLogger implements Logger{

-   public void log(Object a){  System.out.println(a); }

- }

- static class ErrLogger implements Logger{

-   public void log(Object a){ System.err.println(a); }

- }

static int main(int n){

  int count = 0, total = 0;

- PrintLogger logger = new PrintLogger();

  while(count < n){

    count += 1;

    if (0 < 100) System.out.println(count);

    total += ackermann(2, 2);

    total += ackermann(0, n);

-   int d1 = ackermann(n, 1);

    int d2 = ackermann(n, count);

    if (count % 2 == 0) total += d2;

  }

  return total;

}

The previous optimizations mean that the d1 variable is now completely unused, as is 
the logger variable, and all the Logger classes, so they can be removed.



Manual Optimizations: Branch Elimination
// https://en.wikipedia.org/wiki/Ackermann_function

static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

}

static int main(int n){

  int count = 0, total = 0;

  while(count < n){

    count += 1;

-   if (0 < 100) System.out.println(count);

+   System.out.println(count);

    total += ackermann(2, 2);

    total += ackermann(0, n);

    int d2 = ackermann(n, count);

    if (count % 2 == 0) total += d2;

  }

  return total;

}

The if (0 < 100) always returns true, so it can be removed.



Manual Optimizations: Partial Evaluation
// https://en.wikipedia.org/wiki/Ackermann_function

static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

}

static int main(int n){

  int count = 0, total = 0;

  while(count < n){

    count += 1;

    System.out.println(count);

-   total += ackermann(2, 2);

+   total += 7;

-   total += ackermann(0, n);

+   total += n + 1;

    int d2 = ackermann(n, count);

    if (count % 2 == 0) total += d2;

  }

  return total;

}

Two of the calls to ackermann have fixed parameters: the first takes two constant 2s 
as arguments and always returns the constant 7, while the second taking a constant 0 
and an unknown integer n will always return n + 1



Manual Optimizations: Late Scheduling
// https://en.wikipedia.org/wiki/Ackermann_function

static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

}

static int main(int n){

  int count = 0, total = 0;

  while(count < n){

    count += 1;

    System.out.println(count);

    total += 7;

    total += n + 1;

-   int d2 = ackermann(n, count);

-   if (count % 2 == 0) total += d2;

+   if (count % 2 == 0) {

+     int d2 = ackermann(n, count);

+     total += d2;

+   }

  }

  return total;

}

The remaining call to ackermann taking two unknown Integers n and count is only 
used in the body of the remaining if. We can thus move it inside the conditional block 
so it is only computed when necessary.



Manual Optimizations: Final
// https://en.wikipedia.org/wiki/Ackermann_function

static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

}

static int main(int n){

  int count = 0, total = 0;

  while(count < n){

    count += 1;

    System.out.println(count);

    total += 7;

    total += n + 1;

    if (count % 2 == 0) {

      int d2 = ackermann(n, count);

      total += d2;

    }

  }

  return total;

}

The final simplified code looks like this. We have taken the somewhat convoluted 
original program, and created a simplified version that does the same thing, in less 
code, and probably faster. Optimizations often make your program both faster and 
simpler as layers of indirection and redundancy are stripped away to reveal the core 
logic of your code.



Automated Optimizations

These simplifications are pretty mechanical, and should be doable automatically by 
an optimizing compiler. Here’s a demo.



How an Optimizing Compiler Works
Hand Optimizing Some Code

Modelling a Program

- Sourcecode
- Abstract Syntax Trees
- Bytecode
- Dataflow Graphs

Making Inferences and Optimizations

We’ll now take a look at how an optimizer like the one I just demoed can model your 
program in memory, before going into the algorithms for doing inference and the 
optimizations themselves.



How an Optimizing Compiler Works
Hand Optimizing Some Code

Modelling a Program

- Sourcecode
- Abstract Syntax Trees
- Bytecode
- Dataflow Graphs

Making Inferences and Optimizations

To begin with, let’s consider source code: your program as a linear String of 
characters



Sourcecode
"""

static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

}

"""

Here is the ackermann function we saw earlier, as a string. As a string, it is human 
readable, but it has other less-convenient properties:

- It contains all sorts of naming and formatting details that are important to a 
user but meaningless to the computer

- There are many more invalid sourcecode strings than there are valid 
sourcecode strings



Sourcecode
"""

static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

}

"""

"""

static int ackermann(int m, int n){

  // hello I am a comment

  if (m == 0) {

    return n + 1;

  } else if (n == 0) {

     return ackermann(m - 1, 1);

  } else {

     return ackermann(m - 1, ackermann(m, n - 1));

  }

}

"""

"""

static int ackermann(int m, int n)                      {

  if (m == 0)                                           {

    return n + 1;                                       }  

  else if (n == 0)                                      {

    return ackermann(m - 1, 1);                         } 

  else                                                  {

    return ackermann(m - 1, ackermann(m, n - 1));       }}

"""

This means that if you are trying to use string-based pattern matching to analyze your 
program, e.g. using Regexes, you need to be able to handle a wide range of possible 
formattings and layouts that mean the same thing.

And if you are using string-manipulation to transform your program, it’s very easy to 
accidentally generate total gibberish

This makes it difficult to work with programs as strings. Not impossible, but is 
generally limited to tools which can do their work under human supervision, e.g. 
Facebook’s CodeMod refactoring tool.



How an Optimizing Compiler Works
Hand Optimizing Some Code

Modelling a Program

- Sourcecode
- Abstract Syntax Trees
- Bytecode
- Dataflow Graphs

Making Inferences and Optimizations

Another way we commonly model programs is as abstract syntax trees, or ASTs



Abstract Syntax Trees
IfElse(

    cond = BinOp(Ident("m"), "==", Literal(0)),

    then = Return(BinOp(Ident("n"), "+", Literal(1)),

    else = IfElse(

        cond = BinOp(Ident("n"), "==", Literal(0)),

        then = Return(Call("ackermann", BinOp(Ident("m"), "-", Literal(1)), Literal(1)),

        else = Return(

            Call(

                "ackermann",

                BinOp(Ident("m"), "-", Literal(1)),

                Call("ackermann", Ident("m"), BinOp(Ident("n"), "-", Literal(1)))

            )

        )

    )

)

ASTs are a simplified representation of the program, as a tree, built directly from 
parsing the source code

Details like formatting, whitespace and comments are discarded, leaving only the 
structure behind. This makes it easier to work with ASTs than strings, and they are a 
common in many compilers and tools.



Abstract Syntax Trees
static int ackermannA(int m, int n){

  int p = n;

  int q = m;

  if (q == 0) return p + 1;

  else if (p == 0) return ackermannA(q - 1, 1);

  else return ackermannA(q - 1, ackermannA(q, p - 1));

}

static int ackermannB(int m, int n){

  int r = n;

  int s = m;

  if (s == 0) return r + 1;

  else if (r == 0) return ackermannB(s - 1, 1);

  else return ackermannB(s - 1, ackermannB(s, r - 1));

}

However, ASTs still contain some amount of irrelevant information. Consider these 
two variants on ackermann that differ from the original by assigning the parameters 
to locals, and differ from each other in the names chosen for those locals.



Abstract Syntax Trees
Block(

    Assign("p", Ident("n")),

    Assign("q", Ident("m")),

    IfElse(

        cond = BinOp(Ident("q"), "==", Literal(0)),

        then = Return(BinOp(Ident("p"), "+", Literal(1)),

        else = IfElse(

            cond = BinOp(Ident("p"), "==", Literal(0)),

            then = Return(Call("ackermann", BinOp(Ident("q"), "-", Literal(1)), Literal(1)),

            else = Return(

                Call(

                    "ackermann",

                    BinOp(Ident("q"), "-", Literal(1)),

                    Call("ackermann", Ident("q"), BinOp(Ident("p"), "-", Literal(1)))

                )

            )

        )

    )

)

While all three functions are semantically identical, they have different ASTs



Abstract Syntax Trees
Block(

    Assign("r", Ident("n")),

    Assign("s", Ident("m")),

    IfElse(

        cond = BinOp(Ident("s"), "==", Literal(0)),

        then = Return(BinOp(Ident("r"), "+", Literal(1)),

        else = IfElse(

            cond = BinOp(Ident("r"), "==", Literal(0)),

            then = Return(Call("ackermann", BinOp(Ident("s"), "-", Literal(1)), Literal(1)),

            else = Return(

                Call(

                    "ackermann",

                    BinOp(Ident("s"), "-", Literal(1)),

                    Call("ackermann", Ident("s"), BinOp(Ident("r"), "-", Literal(1)))

                )

            )

        )

    )

)

The key here is that while ASTs are structured as trees, some nodes semantically do 
not behave as trees: if you want to know something about Ident(“r”), you cannot just 
look at its contents, but need to go hunt down the Assign(“r”) node somewhere else.



Abstract Syntax Trees

In effect, these Ident/Assign pairs serve as additional edges in the AST, which are 
just as important as those in the original tree structure



Abstract Syntax Trees

Our program is in fact a directed graph structure, possibly cyclic, embedded into a 
tree structure using these Ident/Assign pairs. This is an idea that we will come back 
to later.



How an Optimizing Compiler Works
Hand Optimizing Some Code
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- Sourcecode
- Abstract Syntax Trees
- Bytecode
- Dataflow Graphs

Making Inferences and Optimizations

The next kind of program representation we will look at is Java Bytecode



BYTECODE

 0: iload_0
 1: ifne          8
 4: iload_1
 5: iconst_1
 6: iadd
 7: ireturn
 8: iload_1
 9: ifne          20
12: iload_0
13: iconst_1
14: isub
15: iconst_1
16: invokestatic ackermann:(II)I
19: ireturn
20: iload_0
21: iconst_1
22: isub
23: iload_0
24: iload_1
25: iconst_1
26: isub
27: invokestatic ackermann:(II)I
30: invokestatic ackermann:(II)I
33: ireturn

static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

}

A Java source program is compiled to a linear list of instructions called bytecode. 
Here, we can see the ackermann function on the right compiled to a linear bytecode 
on the left



static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

}

BYTECODE                            LOCALS          STACK
                                    |a0|a1|         |
 0: iload_0                         |a0|a1|         |a0|
 1: ifne          8                 |a0|a1|         |
 4: iload_1                         |a0|a1|         |a1|
 5: iconst_1                        |a0|a1|         |a1| 1|
 6: iadd                            |a0|a1|         |v1|
 7: ireturn                         |a0|a1|         |
 8: iload_1                         |a0|a1|         |a1|
 9: ifne          20                |a0|a1|         |
12: iload_0                         |a0|a1|         |a0|
13: iconst_1                        |a0|a1|         |a0| 1|
14: isub                            |a0|a1|         |v2|
15: iconst_1                        |a0|a1|         |v2| 1|
16: invokestatic ackermann:(II)I    |a0|a1|         |v3|
19: ireturn                         |a0|a1|         |
20: iload_0                         |a0|a1|         |a0|
21: iconst_1                        |a0|a1|         |a0| 1|
22: isub                            |a0|a1|         |v4|
23: iload_0                         |a0|a1|         |v4|a0|
24: iload_1                         |a0|a1|         |v4|a0|a1|
25: iconst_1                        |a0|a1|         |v4|a0|a1| 1|
26: isub                            |a0|a1|         |v4|a0|v5|
27: invokestatic ackermann:(II)I    |a0|a1|         |v4|v6|
30: invokestatic ackermann:(II)I    |a0|a1|         |v7|
33: ireturn                         |a0|a1|         |

In Bytecode, there is an operand STACK where values can be placed to be operated 
on, and an array of LOCALS where values can be stored in between operations. 

I have annotated the LOCALS and STACK here for clarity, so you can see the height 
of the stack growing as values are moved onto it, and shrinking as computations like 
iadd combine multiple values into one.



BYTECODE                            LOCALS          STACK
                                    |a0|a1|         |
 0: iload_0                         |a0|a1|         |a0|
 1: ifne          8                 |a0|a1|         |
 4: iload_1                         |a0|a1|         |a1|
 5: iconst_1                        |a0|a1|         |a1| 1|
 6: iadd                            |a0|a1|         |v1|
 7: ireturn                         |a0|a1|         |
 8: iload_1                         |a0|a1|         |a1|
 9: ifne          20                |a0|a1|         |
12: iload_0                         |a0|a1|         |a0|
13: iconst_1                        |a0|a1|         |a0| 1|
14: isub                            |a0|a1|         |v2|
15: iconst_1                        |a0|a1|         |v2| 1|
16: invokestatic ackermann:(II)I    |a0|a1|         |v3|
19: ireturn                         |a0|a1|         |
20: iload_0                         |a0|a1|         |a0|
21: iconst_1                        |a0|a1|         |a0| 1|
22: isub                            |a0|a1|         |v4|
23: iload_0                         |a0|a1|         |v4|a0|
24: iload_1                         |a0|a1|         |v4|a0|a1|
25: iconst_1                        |a0|a1|         |v4|a0|a1| 1|
26: isub                            |a0|a1|         |v4|a0|v5|
27: invokestatic ackermann:(II)I    |a0|a1|         |v4|v6|
30: invokestatic ackermann:(II)I    |a0|a1|         |v7|
33: ireturn                         |a0|a1|         |

static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

  else return ackermann2(ackermann(m, n - 1));

}

The big issue with bytecode is that modifying the program is hard. Imagine if we want 
to replace the outer call to ackermann taking two arguments with a call to 
ackermann2 only taking one argument.



BYTECODE                            LOCALS          STACK
                                    |a0|a1|         |
 0: iload_0                         |a0|a1|         |a0|
 1: ifne          8                 |a0|a1|         |
 4: iload_1                         |a0|a1|         |a1|
 5: iconst_1                        |a0|a1|         |a1| 1|
 6: iadd                            |a0|a1|         |v1|
 7: ireturn                         |a0|a1|         |
 8: iload_1                         |a0|a1|         |a1|
 9: ifne          20                |a0|a1|         |
12: iload_0                         |a0|a1|         |a0|
13: iconst_1                        |a0|a1|         |a0| 1|
14: isub                            |a0|a1|         |v2|
15: iconst_1                        |a0|a1|         |v2| 1|
16: invokestatic ackermann:(II)I    |a0|a1|         |v3|
19: ireturn                         |a0|a1|         |
20: iload_0                         |a0|a1|         |a0|
21: iconst_1                        |a0|a1|         |a0| 1|
22: isub                            |a0|a1|         |v4|
23: iload_0                         |a0|a1|         |v4|a0|
24: iload_1                         |a0|a1|         |v4|a0|a1|
25: iconst_1                        |a0|a1|         |v4|a0|a1| 1|
26: isub                            |a0|a1|         |v4|a0|v5|
27: invokestatic ackermann:(II)I    |a0|a1|         |v4|v6|
30: invokestatic ackermann:(II)I    |a0|a1|         |v7|
30: invokestatic ackermann2:(I)I    |a0|a1|         |v7|
33: ireturn                         |a0|a1|         |

static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

  else return ackermann2(ackermann(m, n - 1));

}

Not only do you have to replace the instruction itself.



BYTECODE                            LOCALS          STACK
                                    |a0|a1|         |
 0: iload_0                         |a0|a1|         |a0|
 1: ifne          8                 |a0|a1|         |
 4: iload_1                         |a0|a1|         |a1|
 5: iconst_1                        |a0|a1|         |a1| 1|
 6: iadd                            |a0|a1|         |v1|
 7: ireturn                         |a0|a1|         |
 8: iload_1                         |a0|a1|         |a1|
 9: ifne          20                |a0|a1|         |
12: iload_0                         |a0|a1|         |a0|
13: iconst_1                        |a0|a1|         |a0| 1|
14: isub                            |a0|a1|         |v2|
15: iconst_1                        |a0|a1|         |v2| 1|
16: invokestatic ackermann:(II)I    |a0|a1|         |v3|
19: ireturn                         |a0|a1|         |
20: iload_0                         |a0|a1|         |a0|
21: iconst_1                        |a0|a1|         |a0| 1|
22: isub                            |a0|a1|         |v4|
23: iload_0                         |a0|a1|         |v4|a0|
24: iload_1                         |a0|a1|         |v4|a0|a1|
25: iconst_1                        |a0|a1|         |v4|a0|a1| 1|
26: isub                            |a0|a1|         |v4|a0|v5|
27: invokestatic ackermann:(II)I    |a0|a1|         |v4|v6|
30: invokestatic ackermann:(II)I    |a0|a1|         |v7|
30: invokestatic ackermann2:(I)I    |a0|a1|         |v7|
33: ireturn                         |a0|a1|         |

static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

  else return ackermann2(ackermann(m, n - 1));

}

Uou also need to trace the now-unnecessary first argument backwards along the 
STACK to find three more instructions that need to be removed.

With bytecode, the inputs to an instruction may come from other instructions scattered 
throughout the program, and modifying one instruction often requires a similar 
scattering of supporting changes. That makes it difficult to work with.
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The Ident/Assign pairs in our ASTs and the LOCALS and STACK of our bytecode 
both form a directed graph, with edges going from the instruction that computes a 
value, to the instructions that use it. Why not work with that graph directly?



Dataflow Graphs
static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

}

static int ackermannA(int m, int n){

  int p = n;

  int q = m;

  if (q == 0) return p + 1;

  else if (p == 0) return ackermannA(q - 1, 1);

  else return ackermannA(q - 1, ackermannA(q, p - 1));

}

static int ackermannB(int m, int n){

  int r = n;

  int s = m;

  if (s == 0) return r + 1;

  else if (r == 0) return ackermannB(s - 1, 1);

  else return ackermannB(s - 1, ackermannB(s, r - 1));

}

Dataflow graphs are like ASTs, but with the Assign/Ident pairs explicitly modelled as 
first class edges. A dataflow graph doesn’t care how you move values in an out of 
local variables: only where values come from, and where they are used.

In this case, ackermann and both variants ackermannA and ackermannB all result 
in the same dataflow graph



Dataflow Graphs
static int ackermann(int m, int n){

  if (m == 0) return n + 1;

  else if (n == 0) return ackermann(m - 1, 1);

  else return ackermann(m - 1, ackermann(m, n - 1));

  else return ackermann2(ackermann(m, n - 1));

}

In a dataflow graph, the inputs to an instruction are simply the incoming edges. A 
modification like the ackermann/ackermann2 change earlier is just replacing one 
node, removing one edge, and removing the nodes upstream of it. When analyzing an 
instruction, there are generally direct edges between that instruction and all other 
instructions you might care about, making dataflow graphs relatively easy to both 
analyze and modify.

This description of dataflow graphs is greatly simplified. We can go into more detail 
later if we have time
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Now that we have seen the different optimizations we want to do, and the different 
ways we can model programs, let’s finally move on to performing those inferences 
and optimizations automatically
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First, let’s look at type inference and constant folding



Type Inference & Constant Folding
What do we know about a value?

- Is it an Integer? String? Array[Float]? PrintLogger?

- Is it a CharSequence, which could be either a String or a StringBuilder?

- Is it Any, meaning we don’t know anything about it?

Type inference involves inferring constraints about values within your program. 
Although the ASTs and bytecode may already be typed, we can often infer much more 
detail than is already present.



Type Lattices

Types are often modelled as a lattice, which tells us how much we know about a 
value. Can it be Anything? Or only an integer? Or a CharSequence? Or a specific 
CharSequence, like String or StringBuilder?

Given a value in your program, the higher up in the lattice its inferred type lives, the 
less we know about it. If we have a value which could be one of two types, we look for 
the least upper bound in the lattice and treat it as that.



Type Lattices

For example, a value that is either a String or StringBuilder is treated as a 
CharSequence



Type Lattices

While a value which could be one of String or Integer is treated as Any



Type Lattices

Sometimes we infer not only that something is an integer, but that it is the integer 0. 
Or that not only is something a String, but the string “hello”. Extending the lattice to 
handle this straightforward: these are called “singleton types”, and can be treated the 
same as any other type in our lattice.



Inferring Values on the Dataflow Graph
static int main(int n){

  int count = 0, multiplied = 0;

  while(count < n){

    if (multiplied < 100) logger.log(count);

    count += 1;

    multiplied *= count;

  }

  return ...;

}

To see how type inference works, let’s look at a simplified version of our main 
method, and its corresponding Dataflow Graph



Inferring Values on the Dataflow Graph
static int main(int n){

  int count = 0, multiplied = 0;

  while(count < n){

    if (multiplied < 100) logger.log(count);

    count += 1;

    multiplied *= count;

  }

  return ...;

}

0 0

We start off at block0, and see that 0 is assigned to multiplied and count



Inferring Values on the Dataflow Graph
static int main(int n){

  int count = 0, multiplied = 0;

  while(count < n){

    if (multiplied < 100) logger.log(count);

    count += 1;

    multiplied *= count;

  }

  return ...;

}

0 0
Integer

Boolean

Next, we transition into block1, n is an unknown Integer input parameter, and 0 < 
Integer is an unknown Boolean, so we need to consider both branches of the if



Inferring Values on the Dataflow Graph
static int main(int n){

  int count = 0, multiplied = 0;

  while(count < n){

    if (multiplied < 100) logger.log(count);

    count += 1;

    multiplied *= count;

  }

  return ...;

}

0 0
Integer

Boolean

block3 is just a return, and we can ignore it for now



Inferring Values on the Dataflow Graph
static int main(int n){

  int count = 0, multiplied = 0;

  while(count < n){

    if (multiplied < 100) logger.log(count);

    count += 1;

    multiplied *= count;

  }

  return ...;

}

0 0
Integer

Boolean

While on the other branch of the if, block1b and block1c are just doing some 
logging, and can also be mostly ignored.



Inferring Values on the Dataflow Graph
static int main(int n){

  int count = 0, multiplied = 0;

  while(count < n){

    if (multiplied < 100) logger.log(count);

    count += 1;

    multiplied *= count;

  }

  return ...;

}

0
Integer

Boolean

1

0

block2 is the next block that modifies multiplied and count. We see it adds count 
(previously 0) and 1, giving us 1, and stores it back in count. We now know count is 
either 0 or 1



Inferring Values on the Dataflow Graph
static int main(int n){

  int count = 0, multiplied = 0;

  while(count < n){

    if (multiplied < 100) logger.log(count);

    count += 1;

    multiplied *= count;

  }

  return ...;

}

0
Integer

Boolean

1

Integer

We can look at our type lattice to see that the least upper bound of both 0 and 1 is 
Integer, and assign that inference to count. 



Inferring Values on the Dataflow Graph
static int main(int n){

  int count = 0, multiplied = 0;

  while(count < n){

    if (multiplied < 100) logger.log(count);

    count += 1;

    multiplied *= count;

  }

  return ...;

}

0
Integer

Boolean

1

0

Integer

We also see it multiplying multiplied by count, but since multiplied is already 0, it 
remains 0 even after multiplication.



Inferring Values on the Dataflow Graph
static int main(int n){

  int count = 0, multiplied = 0;

  while(count < n){

    if (multiplied < 100) logger.log(count);

    count += 1;

    multiplied *= count;

  }

  return ...;

}

0
Integer

Boolean

1

0

Integer

Since count’s inference has been updated from 1 to Integer, we have look at all the 
nodes downstream to see if they need updating



Inferring Values on the Dataflow Graph
static int main(int n){

  int count = 0, multiplied = 0;

  while(count < n){

    if (multiplied < 100) logger.log(count);

    count += 1;

    multiplied *= count;

  }

  return ...;

}

0
Integer

Boolean

1

0

Integer

< taking two unknown Integers remains an unknown Boolean



Inferring Values on the Dataflow Graph
static int main(int n){

  int count = 0, multiplied = 0;

  while(count < n){

    if (multiplied < 100) logger.log(count);

    count += 1;

    multiplied *= count;

  }

  return ...;

}

0
Integer

Boolean
0

Integer

Integer

But count + 1, previously inferred as 1, is now Integer + 1 -> Integer



Inferring Values on the Dataflow Graph
static int main(int n){

  int count = 0, multiplied = 0;

  while(count < n){

    if (multiplied < 100) logger.log(count);

    count += 1;

    multiplied *= count;

  }

  return ...;

}

0
Integer

Boolean
0

Integer

Integer

Since we the output of + gets stored back into count, we propagate the inference 
back there as well. count was previously an Integer, and remains an Integer now, so 
that propagation terminates.



Inferring Values on the Dataflow Graph
static int main(int n){

  int count = 0, multiplied = 0;

  while(count < n){

    if (multiplied < 100) logger.log(count);

    count += 1;

    multiplied *= count;

  }

  return ...;

}

0
Integer

Boolean
0

Integer

Integer

And we’re done: the dataflow inference has reach a fixed point, and further iteration 
will not change any of the inferred values.



Inferring Values on the Dataflow Graph
static int main(int n){

  int count = 0, multiplied = 0;

  while(count < n){

    if (multiplied < 100) logger.log(count);

    count += 1;

    multiplied *= count;

  }

  return ...;

}

0
Integer

Boolean
0

Integer

Integer

We can then make use of our inference to implify the program: since we know 
multiplied is always 0, we can remove any nodes which affect multiplied, and 
replace multiplied with 0 in any node which uses it



Inferring Values on the Dataflow Graph
static int main(int n){

  int count = 0;

  while(count < n){

    logger.log(count);

    count += 1;

  }

  return ...;

}

That gives us the following simplified dataflow graph, which serializes into a simplified 
Java program. In the process of type inference, we have performed constant folding, 
which is really nothing more than normal type inference on singleton types.
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We’ve seen how inference works within a single function body. Now let’s look at how it 
works between functions.



Inter-Procedural Inference
static int main(int n){

    return called(0, n);

}

static int called(int x, int y){

    return x * y;

}

Consider this case with two simple functions, one calling the other



Inter-Procedural Inference
static int main(int n){

    return called(0, n);

}

static int called(int x, int y){

    return x * y;

}

Integer0

We start off in the main function, which takes an argument n as an unknown Integer, 
and passes it with 0 to the function called. To know what type called‘s return value is, 
we need to first analyze the body of called



Inter-Procedural Inference
static int main(int n){

    return called(0, n);

}

static int called(int x, int y){

    return x * y;

}

Integer0

Integer
0

Inside called, we see that x is bound to 0, and y is bound to Integer. 



Inter-Procedural Inference
static int main(int n){

    return called(0, n);

}

static int called(int x, int y){

    return x * y;

}

Integer0

Integer
0

0

0

Thus * can be inferred to be 0, which gets returned



Inter-Procedural Inference
static int main(int n){

    return called(0, n);

}

static int called(int x, int y){

    return x * y;

}

Integer
0

0

Integer0

0

0

0

And so main can be inferred to return 0



Inter-Procedural Inference
static int main(int n){

    return called(n, 0);

}

static int called(int x, int y){

    return x * y;

}

static int main(int n){

    return 0;

}

From there, we can simplify our dataflow graph to make main return 0 directly, without 
all this rigmarole. This simplified dataflow graph serializes to the corresponding 
simplified program
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Next, let us look at how we handle inference of recursive functions



Recursive Inter-Procedural Inference
public static Any factorial(int n) {

    if (n == 1) {

        return 1;

    } else {

        return n * factorial(n - 1);

    }

}

Consider this factorial function written in pseudo-java: it takes an int n, but it does 
not have its return type annotated (labeled Any). It is obvious to us that this function 
returns an integer, but how can our algorithm infer that automatically?



Recursive Inter-Procedural Inference
public static Any factorial(int n) {

    if (n == 1) {

        return 1;

    } else {

        return n * factorial(n - 1);

    }

}

Integer

Boolean

1

Following our existing strategy, we start at block0. n is an input Integer, == is an 
unknown Boolean, so we must consider both branches



Recursive Inter-Procedural Inference
public static Any factorial(int n) {

    if (n == 1) {

        return 1;

    } else {

        return n * factorial(n - 1);

    }

}

Integer

Boolean

1

1

The true block is simple: we return the constant 1



Recursive Inter-Procedural Inference
public static Any factorial(int n) {

    if (n == 1) {

        return 1;

    } else {

        return n * factorial(n - 1);

    }

}

Integer

Boolean

1

1

Integer

1

?

The false block, we know n - 1 is Integer - 1 which is just any Integer, but how do we 
infer the type of factorial? We can’t recurse into it, because if we did we would just 
recurse infinitely.



Recursive Inter-Procedural Inference
public static Any factorial(int n) {

    if (n == 1) {

        return 1;

    } else {

        return n * factorial(n - 1);

    }

}

Integer

Boolean

1

1

Integer

1

?

The solution to this is to extend our type lattice with a new type Bottom, which is a 
placeholder below every other type. 



Recursive Inter-Procedural Inference
public static Any factorial(int n) {

    if (n == 1) {

        return 1;

    } else {

        return n * factorial(n - 1);

    }

}

Integer

Boolean

1

1

Integer

1

Bottom

Bottom

Bottom

We tentatively infer the recursive call to factorial as Bottom, and everything 
downstream - here the  * and return nodes - as Bottom as well.



Recursive Inter-Procedural Inference
public static Any factorial(int n) {

    if (n == 1) {

        return 1;

    } else {

        return n * factorial(n - 1);

    }

}

Integer

Boolean

1

1

Integer

1

1

Bottom

Bottom

From this, we can take the least upper bound of the two returns: 1 and Bottom, and 
infer that the function as a whole must return 1

Now, that we have inferred the return type of factorial using our Bottom 
placeholders, we must go back and plug 1 into the inference of our recursive factorial 
call. 



Recursive Inter-Procedural Inference
public static Any factorial(int n) {

    if (n == 1) {

        return 1;

    } else {

        return n * factorial(n - 1);

    }

}

Integer

Boolean

1

1

Integer

1

1

Integer

Integer

Since factorial returns 1, Integer * 1 is a Integer, and so the false block return can 
be inferred to return Integer.



Recursive Inter-Procedural Inference
public static Any factorial(int n) {

    if (n == 1) {

        return 1;

    } else {

        return n * factorial(n - 1);

    }

}

Integer

Boolean

1

1

Integer

1

Integer

Integer

Integer

Now, we can again take the least upper bound of the two returns - 1 and Integer - 
and find that factorial must return an Integer

Again we plug that back into the recursive factorial call



Recursive Inter-Procedural Inference
public static Any factorial(int n) {

    if (n == 1) {

        return 1;

    } else {

        return n * factorial(n - 1);

    }

}

Integer

Boolean

1

1

Integer

1

Integer

Integer

Integer

Giving us factorial -> Integer and * -> Integer. Since the inferred type of * did not 
change, the inference has reached a fixed point and stops.



Recursive Inter-Procedural Inference
public static Any factorial(int n) {

public static Integer factorial(int n) {

    if (n == 1) {

        return 1;

    } else {

        return n * factorial(n - 1);

    }

}

Integer

Boolean

1

1

Integer

1

Integer

Integer

Integer

Thus, we can infer that factorial returns not just Any, but an Integer!

You may have noticed that in two of cases we have walked through so far - analyzing 
the original main and analyzing factorial - are both iterative. We had to make multiple 
inference passes around either a loop or a recursive function call before our inference 
stabilizes.

In general, programs without cycles - loops or recursion - can always be analyzed in 
one pass, whereas given a program with cycles you have a choice: do one pass and 
settle for a less-precise inference, or use iteration to most precisely infer all their 
properties. Your number of passes is bounded by the height of your lattice.
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The last thing I will go into is liveness and reachability analysis



Liveness & Reachability Analysis
Find all the code whose values contribute to the final returned result ("Live") 

Find all code which the the control-flow of the program can reach ("Reachable")

Code that fails either test is a safe candidate for removal!

The goal of these two analyses is to remove code that either never runs, or runs but 
doesn’t affect the program output



Strawman Program
static int main(int n){

  int count = 0, total = 0, multiplied = 0;

  while(count < n){

    if (multiplied > 100) count += 1;

    count += 1;

    multiplied *= 2;

    total += 1;

  }

  return count;

}

Here’s another simplified version of main. We can see that total is not used, even 
though it gets initialized and updated. On the other hand, count is used, but it has a 
count += 1 update site in the if block that never runs.

Thus total is “not live”, while the count += 1 is “not reachable”: both can be 
eliminated.



Type Inference & Constant Folding
static int main(int n){

  int count = 0, total = 0, multiplied = 0;

  while(count < n){

    if (multiplied > 100) count += 1;

    count += 1;

    multiplied *= 2;

    total += 1;

  }

  return count;

}

To derive these facts, we start off with the same inference algorithm we saw earlier. 
This tells us multiplied is always 0, and lets us simplify the dataflow graph



Branch Elimination & Reachability Analysis
static int main(int n){

  int count = 0, total = 0;

  while(count < n){

    if (0 > 100) count += 1;

    count += 1;

    total += 1;

  }

  return count;

}

From here, we can see that 0 > 100 is always false. That means we can eliminate the 
if branch at the end of block1b, as well as removing the entire block1c in the 
process.



Liveness Optimizations
static int main(int n){

  int count = 0, total = 0;

  while(count < n){

    0 > 100;

    count += 1;

    total += 1;

  }

  return count;

}

Lastly, we can do a simple breadth-first-traversal of the program graph starting from 
the return node and going upstream. This finds that total and > are not used in the 
final value being returned. We thus eliminate them as well



Final Output Code
static int main(int n){

  int count = 0;

  while(count < n){

    count += 1;

  }

  return count;

}

And so we end up with this simplified dataflow graph, and its corresponding simplified 
Java program



How an Optimizing Compiler Works
Hand Optimizing Some Code

- Type Inference
- Inlining
- Constant Folding
- Dead Code Elimination
- Branch Elimination
- Late Scheduling

Modelling a Program

- Sourcecode
- Abstract Syntax Trees
- Bytecode
- Dataflow Graphs

Making Inferences and Optimizations

- Type Inference & Constant Folding
- Inter-Procedural Inference
- Recursive Inter-Procedural Inference
- Liveness & Reachability Analysis

To wrap up, we have seen some optimizations that we can perform manually, 
compared different ways an optimizing compiler can model a program in memory, and 
saw how to use algorithms on a graph to optimize our code: even in the presence of 
loops, function calls, or recursion. We saw how simple traversals over simple data 
structures is enough to perform optimizations that typically require a human 
programmer to do.

The examples here were of Java sourcecode and bytecode, but the techniques 
generalize to work with most programming languages.
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If you want to dig deeper in this topic, this book and paper are a great jumping off 
points into the field of optimizing compilation

The approach I have presented is just one of the many different ways of architecting 
an optimizing compiler, but is an approach used in real production systems such as 
the Java C2 HotSpot JIT. Hopefully this talk has helped give an intuition for the 
mechanisms through which optimizing compilers work their magic.

https://www.amazon.com/Engineering-Compiler-Keith-Cooper/dp/012088478X
https://www.amazon.com/Engineering-Compiler-Keith-Cooper/dp/012088478X
https://www.researchgate.net/profile/Cliff_Click/publication/2394127_Combining_Analyses_Combining_Optimizations/links/0a85e537233956f6dd000000.pdf
https://www.researchgate.net/profile/Cliff_Click/publication/2394127_Combining_Analyses_Combining_Optimizations/links/0a85e537233956f6dd000000.pdf

